framapiaf.org est l'un des nombreux serveurs Mastodon indépendants que vous pouvez utiliser pour participer au fédiverse.
Un service Mastodon fourni par l'association d’éducation populaire Framasoft.

Administré par :

Statistiques du serveur :

1,4K
comptes actifs

#clusters

0 message0 participant0 message aujourd’hui

#30DayChartChallenge Día 13: Clusters Animales! 🐾 Explorando la relación Masa Corporal vs Longevidad Máxima. #RelationshipsWeek

Usando un dataset de Kaggle (+170 especies, ¡gracias S. Banerjee!) y tras una divertida limpieza de datos con rangos/unidades mixtas 😅, este scatter plot log-log revela patrones.

Coloreamos por Dieta: 🥩Carnívoro(verde) 🌿Herbívoro(ocre) ❓Omnívoro(azul).
Se ve la tendencia general (más grande = más longevo), pero los clústeres por dieta sugieren distintas **estrategias de historia de vida**. ¿Cómo gestionan su energía y longevidad según lo que comen? 🤔

¡Una visualización para explorar la alometría y la diversidad ecológica!

🛠️ #rstats #ggplot2 y mi nuevo tema #theme_week3_animals.
📂 Código/Viz: t.ly/ehPiu

Want to play with Kubernetes? Gyptazy shows a fun way to do it.

Excerpt:

Talos Linux is an operating system built specifically for Kubernetes, focusing on security, immutability, and minimalism, designed to work across a variety of environments, including cloud platforms, bare metal servers, and virtualization platforms, providing a versatile solution for modern infrastructure needs.

gyptazy.com/talos-linux-howto-

#bash#csh#ksh
arXiv.orgJet reorientation in central galaxies of clusters and groups: insights from VLBA and Chandra dataRecent observations of galaxy clusters and groups with misalignments between their central AGN jets and X-ray cavities, or with multiple misaligned cavities, have raised concerns about the jet - bubble connection in cooling cores, and the processes responsible for jet realignment. To investigate the frequency and causes of such misalignments, we construct a sample of 16 cool core galaxy clusters and groups. Using VLBA radio data we measure the parsec-scale position angle of the jets, and compare it with the position angle of the X-ray cavities detected in Chandra data. Using the overall sample and selected subsets, we consistently find that there is a 30% - 38% chance to find a misalignment larger than $ΔΨ= 45^{\circ}$ when observing a cluster/group with a detected jet and at least one cavity. We determine that projection may account for an apparently large $ΔΨ$ only in a fraction of objects ($\sim$35%), and given that gas dynamical disturbances (as sloshing) are found in both aligned and misaligned systems, we exclude environmental perturbation as the main driver of cavity - jet misalignment. Moreover, we find that large misalignments (up to $\sim90^{\circ}$) are favored over smaller ones ($45^{\circ}\leqΔΨ\leq70^{\circ}$), and that the change in jet direction can occur on timescales between one and a few tens of Myr. We conclude that misalignments are more likely related to actual reorientation of the jet axis, and we discuss several engine-based mechanisms that may cause these dramatic changes.